Order parameters, free fermions, and conservation laws for Calogero–Moser systems
نویسندگان
چکیده
منابع مشابه
High-Order Central Schemes for Hyperbolic Systems of Conservation Laws
A family of shock capturing schemes for the approximate solution of hyperbolic systems of conservation laws is presented. The schemes are based on a modified ENO reconstruction of pointwise values from cell averages and on approximate computation of the flux on cell boundaries. The use of a staggered grid avoids the need of a Riemann solver. The integral of the fluxes is computed by Simpson’s r...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملHigh Order Regularity for Conservation Laws
We study the regularity of discontinuous entropy solutions to scalar hyperbolic conservation laws with uniformly convex fluxes posed as initial value problems on R. For positive α we show that if the initial data has bounded variation and the flux is smooth enough then the solution u( · , t) is in the Besov space Bα σ (L σ) where σ = 1/(α + 1) whenever the initial data is in this space. As a co...
متن کاملConservation Laws of Free Boundary Problems and the Classification of Conservation Laws for Water Waves
The two-dimensional free boundary problem for incompressible irrotational water waves without surface tension is proved to have exactly eight nontrivial conservation laws. Included is a discussion of what constitutes a conservation law for a general free boundary problem, and a characterization of conservation laws for two-dimensional free boundary problems involving a harmonic potential proved...
متن کاملInvariant Regions for Systems of Conservation Laws
We describe necessary and sufficient conditions for a region in R." to be invariant for (Glimm) solutions of the system of n conservation laws Ut + f(u)x = 0. We also make some observations about the invariance of such regions for certain finite difference approximations of solutions of systems of conservation laws.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Mathematics
سال: 1998
ISSN: 1093-6106,1945-0036
DOI: 10.4310/ajm.1998.v2.n4.a4